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breeding. There is evidence that new ideotypes for long-
standing traits such as flowering time may be required. In 
order to detect targets for future marker-assisted improve-
ment and validate the practical application of GS for wheat 
breeding we genotyped 376 elite wheat varieties with 3,046 
DArT, single nucleotide polymorphism and gene markers 
and measured seven traits in replicated yield trials over 
2 years in France, Germany and the UK. The scale of the 
phenotyping exceeds the breadth of previous AM and GS 
studies in these key economic wheat production regions of 
Northern Europe. Mixed-linear modelling (MLM) detected 
significant marker-trait associations across and within 
regions. Genomic prediction using elastic net gave low to 
high prediction accuracies depending on the trait, and could 
be experimentally increased by modifying the constituents 
of the training population (TP). We also tested the use of 
differentially penalised regression to integrate candidate 
gene and genome-wide markers to predict traits, demon-
strating the validity and simplicity of this approach. Over-
all, our results suggest that whilst AM offers potential for 
application in both research and breeding, GS represents an 
exciting opportunity to select key traits, and that optimisa-
tion of the TP is crucial to its successful implementation.

Introduction

A ‘perfect storm’ is building in the necessity to balance 
food production, land utilisation and challenging pro-
duction environments to meet future needs (Beddington 
2009). Growing environmental concerns will also neces-
sitate reductions in agricultural inputs. In 2012, yields of 
wheat (Triticum aestivum), a central contributor to current 
and future food security, grown on two million hectares of 
agricultural land in the United Kingdom (GBR) decreased 
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by 13 %. This reflected a growing season featuring high 
disease pressure, persistent late-season rainfall, cool con-
ditions and low sunlight levels (DEFRA 2012). Earlier 
flowering varieties tended to outperform later varieties, 
a reversal of normal season expectations (HGCA 2012). 
Instability for long-standing adaptive response represents a 
new challenge to the sustained production of high-yielding 
wheat varieties.

The quantitative inheritance of agronomic traits, includ-
ing yield, is an ongoing limitation to their successful incor-
poration into wheat breeding programmes. These traits also 
display strong environmental interactions, and dissection of 
their genetic control has been limited to date. In contrast, 
the major genes controlling adaptative traits including flow-
ering time (FT) and height (HT) have been relatively well 
characterised in wheat, although additional variation exists. 
In a seminal European multi-year, multi-environment study, 
Worland (1996) illustrated the importance of matching 
appropriate FT to agri-environment. Mutant, photoperiod 
insensitive (PI) lines (Ppd-D1a, genetically characterised 
by Beales et al. 2007) were early flowering and gave a yield 
advantage in southern Europe through reduced exposure to 
late-season temperature extremes and drought stress. The 
opposite effect was observed in cooler GBR conditions 
where wild-type photoperiod sensitive (PS) lines were able 
to exploit the longer growing season to build yield. HT is 
also central to adaptation, and the reduced HT alleles Rht-
B1b and Rht-D1b each confer a 15–20 % HT reduction 
without compromising grain yield (reviewed by Hedden 
2003), and are used worldwide (Wilhelm et al. 2013).

Linkage disequilibrium or association mapping (AM), 
originally developed for detecting the genetic control of 
complex traits in human studies (Bodmer 1987), offers 
new potential for characterising traits of interest for wheat 
breeding. This utility is bolstered by the increasing avail-
ability of affordable, high density, genome-wide molecular 
markers. AM exploits high allelic diversity for quantitative 
trait loci (QTL) detection, with linkage disequilibrium (LD) 
maintained over generations between linked loci (Neumann 
et al. 2011). The ability to survey large gene pools that are 
more representative of the breeding pool within any given 
country or geographic area lends itself to the detection and 
mapping of multiple traits in a single panel of genotypes 
(Neumann et al. 2011). Despite the well-documented limi-
tations of AM, including its inability to detect rare alleles, 
and the effects of unaccounted (Lewis 2002; Zhao et al. 
2007) or overcorrected (Segura et al. 2012) population 
structure, AM has the advantage of being able to detect 
robust loci that have an effect across genetic backgrounds 
(Jannink 2007).

AM studies have been employed to detect the genetic 
basis of a number of traits in wheat. Crossa et al. (2007) 
used DArT markers to detect numerous marker-trait 

associations in historical multi-location field trial data for 
traits including grain yield (YLD) and foliar disease resist-
ance. Neumann et al. (2011) tested the association of 20 
agronomic characters over multiple years in a diverse 
breeders’ collection of 96 winter wheat accessions. More 
recently, Reif et al. (2011) reported AM results for end-
use quality traits including thousand grain weight (TGW), 
grain protein content (GPC) and sedimentation volume 
in a collection of 207 soft winter wheat lines genotyped 
with 115 microsatellite markers. Maccaferri et al. (2011) 
assessed the association of numerous traits including FT, 
HT and TGW in 189 durum wheat lines grown in multiple 
Mediterranean environments over 2 years using 186 micro-
satellite markers.

 In contrast to AM in which markers tagging major 
effect QTL are detected, genomic selection (GS), proposed 
by Meuwissen et al. (2001) uses all genetic markers simul-
taneously to generate a model of phenotypes and genotypes 
to predict genomic breeding values (GEBVs), thereby aim-
ing to capture the total additive genetic variance for the 
trait of interest. Selection is based on favourable alleles 
from both parents for overall population improvement, and 
offers opportunities for rapidly selecting low heritability 
traits that are under the control of multiple, additive, small 
effect QTL. This approach is particularly appealing for 
quantitative traits, where MAS to pyramid multiple target 
genes into adapted material is unrealistic, and has already 
been shown to have potential in plant breeding (Bernardo 
2009). Model training is based on a training population 
(TP) composed of material with both phenotypic and geno-
typic information, requiring genome-wide marker coverage 
to ensure there is a marker in LD with each QTL. Optimiz-
ing the constituents of the training population is a well-
recognised challenge in the application of GS (reviewed by 
Habier et al. 2010; Clark et al. 2011). The model derived 
from the TP allows selection in a test set on genotype 
alone, reducing the quantity of phenotyping required and 
enabling a reduction in cycle time.

Accuracy of trait prediction may be enhanced by inclu-
sion of markers of known effect, markers tagging candi-
date genes, or markers tagging previously discovered QTL. 
Adding these markers as fixed effects (i.e. without shrink-
age) may be problematic: some may have no effect within 
the TP; significant marker selection can result in bias; and 
there may be colinearity problems (where the marker class 
is large). Pooling selected markers with a substantially 
larger number of genome-wide markers may also under-
estimate their effect. To address these issues, differentially 
penalised regression (DiPR), in which two or more sets 
of covariates are shrunk independently, can be employed. 
To date, DiPR has been used to increase the accuracy of 
predicting seed yield in wheat from metabolite and marker 
data (Ward, Shewry, Mackay, personal communication). 
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The overall aim of this study was to identify environmen-
tally stable QTL targets for wheat improvement in North-
ern Europe via AM. The AM panel consisted of 376 elite 
winter wheat varieties from France (FRA), Germany 
(DEU) and GBR and was phenotyped in replicated field 
trials in each of the countries over 2 years. The panel was 
genotyped with DArT, SNP and candidate gene markers. 
Traits assessed include the breeding targets YLD, FT, HT, 
GPC, specific weight (SW), TGW and winter kill (WK). To 
complement the AM, GS was also performed on the same 
dataset with the aim of experimentally validating its appli-
cation in elite germplasm with significant pedigree over-
lap, therefore informing future practical application based 
on known variation at key adaptive loci. We also tested the 
use of DiPR to integrate candidate adaptation gene infor-
mation with genome-wide DArT markers to predict six of 
the seven traits, demonstrating the validity and simplicity 
of this approach.

Materials and methods

Plant material and phenotyping

A panel of 376 elite winter wheat varieties registered in 
FRA, DEU and GBR between 1946 and 2007 and assem-
bled as part of the European TriticeaeGenome project (htt
p://www.triticeaegenome.eu) was used in this study (Table 
S1). Reference samples have been deposited in the Germ-
plasm Resources Unit of the John Innes Centre, Norwich 
Research Park, and are available on request (E-mail: 
JIC.geneticresources@jic.ac.uk).

All 376 varieties were grown in replicate field plots 
(2 × 4 m harvested area) planted in an incomplete block 
design (with two blocks) in 2010 and 2011 in GBR (NIAB: 
Cambridge 2010; Callow 2011), FRA (Arvalis: Villiers 
le bâcle) and DEU (Limagrain Gmbh: Adenstedt). Three 
traits were scored in all trials: YLD (t/ha at 15 % moisture), 
FT [days to 50 % ear emerged from the flag leaf (GS55; 
Zadoks et al. 1974)] and HT (cm from stem base to top of 
spike at maturity). YLD, FT and HT data were analysed 
using a one-stage analysis in GenStat (14th edition) to gen-
erate estimates for best linear unbiased estimates (BLUEs) 
of variety performance over all sites, and at each site (vari-
ety effects were fixed, site and interaction effects were ran-
dom) for use in the AM and GS. The relationship between 
YLD, FT and HT and both country of origin and variety 
age (based on year of variety registration and divided 
into three arbitrary categories: pre 1990, 1990–1999 and 
2000–2007; Table S1) were analysed using residual maxi-
mum likelihood (REML) in GenStat. In addition, four traits 
were scored in specific locations: WK (DEU 2010/11 on 
a 1–9 visual scale from 1 = less damaged to 9 = heavily 

damaged), SW (FRA 2010/11, hectolitre weight), TGW 
(FRA 2010/11) and GPC (FRA 2010/11 using an InfraTec 
system) and BLUEs calculated as above. Trait heritabilities 
(h2) were estimated for YLD, FT and HT on a single plot 
basis as VG/(VG + VGS + VE) with variation VG for varieties, 
VGS for sites × varieties and VE for within sites (between 
plots) from a random effects ANOVA in GenStat. For traits 
scored in only a subset of locations (TGW, SW, GPC, WK), 
h2 was calculated as VG/(VG + VE/2). The phenotypic data 
are available via CerealsDB (http://www.cerealsdb.uk.net).

Genotyping, linkage disequilibrium, population structure

Genomic DNA was extracted from 2-week-old seed-
lings using a modified Tanksley extraction method (Ful-
ton et al. 1995) and analysed by Triticarte Pty Ltd. (Yar-
ralumla, Australia; www.triticarte.com.au) using the Wheat 
PstI (TaqI) v3 high-density DArT array (7,000 markers). 
A total of 2,712 polymorphic DArT markers were scored. 
Markers with >10 % missing data were removed (43 
markers), as were markers with a minor allele frequency 
<2 % (134 markers), leaving 2,535 DArT markers, which 
are also available via CerealsDB (as above). Then 2,012 
DArT markers were assigned map positions based on pub-
lished mapping information (Huang et al. 2012) and the 
remaining 523 markers were classified as ‘unmapped’. 
Additional published gene marker assays were run on 
the panel, including Vrn-A1, Vrn-B1, Vrn-D1 (Yan et al. 
2004; Fu et al. 2005), Vrn-B3 (Yan et al. 2006), Ppd-D1 
(Beales et al. 2007), Ppd-B1 copy number variation (Diaz 
et al. 2012), Ppd-A1 (Wilhelm et al. 2009), Rht-B1 (Rht1) 
(Ellis et al. 2002), Rht-D1 (Rht2) (Ellis et al. 2002), Rht8 
(gwm261 used to detect 175 bp (referred to as Rht8_175) 
and 192 bp (Rht8_192) alleles; Korzun et al. 1998) and the 
1BL/1RS wheat-rye translocation (de Froidmont 1998) 
using published protocols. The panel was also screened 
with 324 commercial-in-confidence single nucleotide poly-
morphism (SNP) markers developed by Biogemma which 
were unmapped.

Missing genotype data were imputed into the full dataset 
using the package ‘impute’ in R version 3.0.1 for Windows 
(http://cran.r-project.org) (Hastie et al. 2013). After imputa-
tion the data were thinned by removing one marker from 
each pair of markers with an absolute correlation coeffi-
cient of >0.95. The final dataset consisted of 1,804 mark-
ers, with their distribution across the genome as summa-
rised in Table 1. LD was estimated between each pair of 
markers on the same chromosome, and across the genome 
with the squared allele frequency correlation (r2) using the 
‘popgen’ package in R (Marchini 2013).

Population structure was assessed on the final dataset 
using two methods. The first used Bayesian model-based 
clustering as implemented in STRUCTURE v2.2 (Pritchard 

http://www.triticeaegenome.eu
http://www.triticeaegenome.eu
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http://www.triticarte.com.au
http://cran.r-project.org
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et al. 2000). An admixture model was run with default 
parameters using a burn-in period of 100,000 iterations and 
100,000 Markov Chain Monte Carlo (MCMC) iterations to 
model scenarios for 2–10 populations (K) over three runs. 
Number of populations was selected using the graphical 
methods of Evanno et al. (2005). The second method used 
principal coordinate analysis (PCoA), conducted in R with 
the first two principle coordinates used as a proxy for popu-
lation structure.

Association mapping

AM was performed on all traits by implementing a MLM 
in efficient mixed-model association (EMMA) as imple-
mented in the genome association and prediction inte-
grated tool (GAPIT) in R (Lipka et al. 2012). This used 
a marker-based kinship matrix derived from a subset of 
927 mapped markers giving a minimum inter-marker dis-
tance of 1 cM and based on an identical-by-state (IBS) 
allele-sharing matrix to account for genetic relatedness, as 
described by Kang et al. (2008). The significance of asso-
ciations between markers and phenotypes was assessed 
using the false discovery rate (FDR) (Benjamini & Hoch-
berg 1995) with a q value cut-off of 0.05. YLD AM was 
based on BLUEs across experiments, and incorporating 
Rht-B1b, HT and year of variety registration as covariates, 
and on BLUEs from individual trials. FT AM was done on 
BLUEs across experiments, and incorporating Ppd-D1 as a 
covariate, and for each individual trial. HT AM was done 
on BLUEs across experiments, and incorporating Ppd-D1 
and Rht-D1b. AM for WK, SW, TGW and GPC was done 
using BLUEs from trials on which they were measured, 
and with YLD as a covariate (GPC only). Where an asso-
ciation was with an unmapped marker, AM was re-run 
in GAPIT (marker as a trait) to provide an approximate 
marker position.

Statistical power

In order to investigate statistical power, traits were simu-
lated using the final marker dataset with h2 of 0.001, 0.01, 
0.05, 0.10, 0.25, 0.50 and 0.75 for two scenarios: (a) a 
single QTL explaining all the genotypic variation and 
(b) 50 % of residual phenotypic variation attributed to 
100 background markers. For scenario (a), a marker was 
selected at random as the target trait locus (x) and its two 
alleles assigned as 0 and 1. Environmental error for each 
line was simulated by random draws from a normal dis-
tribution with variance scaled to fit the target QTL h2. For 
scenario (b), a marker was selected at random as the target 
trait locus and an environmental error simulated as previ-
ously. 100 background markers were also selected, with 
alleles at each assigned as 0 and 1 and summed to provide 
a residual genetic effect for each line. Residual genetic and 
environmental variances were scaled to be equal and to 
fit the target QTL h2. The 100 background markers were 
selected to be at least 20 cM from the target QTL but were 
otherwise located at random. AM for all simulated traits 
for both scenarios was performed using MLM in EMMA 
as above. All markers within a 20 cM interval of the tar-
get locus, including the target locus itself, were tested for 
association for both scenario (a) (Table S2a) and (b) (Table 
S2b). In addition, a single unlinked marker (>200 cM from 
the target locus) was analysed to test for adequate control 
of false positives. For each combination of target locus and 
h2, 1,000 simulations were performed to assess the power 
and precision to detect the target locus.

Genomic prediction

We tested three commonly used methods for predicting 
genetic values [ridge regression (RR), LASSO and elastic 
net (EN)] on their ability to predict YLD within country of 
variety registration using the R package ‘penalized’ (Goe-
man et al. 2012). All further tests used EN with the excep-
tion of the joint GPC/YLD predictions. The varieties in the 
panel were assigned to groups based on the country of vari-
ety registration (FRA: 210 lines; DEU: 90 lines; GBR: 75 
lines [one US variety (Table S1) was excluded]. TPs were 
then assembled using varieties from a single country and 
to predict GEBVs for varieties from the same country, and 
from the remaining two countries. The models’ parameters 
were estimated on the TP using five runs of tenfold cross-
validation, and predictive power was measured using the 
average Pearson’s correlation across runs. Standard devia-
tions were tested using 100,000 bootstraps. The panel was 
also split based on variety age [pre-1990 (103 lines); 1990–
1999 (120 lines); post-2000 (153 lines)]. TPs were assem-
bled from each time period and used to predict GEBVs 
from the same and subsequent time periods. In addition, 

Table 1  Distribution of 1,804 mapped and unmapped DArT and 
SNP markers across bread wheat genomes (A, B, D) and groups

Chromosome Genome Total by group

A B D

1 97 91 26 214

2 49 113 48 210

3 47 143 10 200

4 63 30 2 95

5 30 73 3 106

6 98 79 15 192

7 83 62 73 218

Total by genome 467 591 177 1,235

Unmapped 569

Total 1,804
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for FT and HT, varieties were assigned to TP and test set 
based on their Ppd-D1 and Rht-D1 allele, respectively, with 
groups consisting exclusively of Ppd-D1a or Rht-B1b lines, 
Ppd-D1b or Rht-D1b lines, or a mixture of the two used 
for calculating GEBVs within and between groups. We 
also investigated predictions using a multivariate approach 
from a joint ridge regression BLUP (RR-BLUP) model of 
GPC and YLD using the ‘synbreed’ package in R (Wimmer 
et al. 2012) to assess the strength of the link between the 
two traits and to predict YLD as a function of GPC. To do 
this, both traits (GPC, YLD) were regressed simultaneously 
against the markers so that the residuals were correlated. 
The residuals’ correlation structure was removed in the pre-
diction, giving the correlation between traits arising from 
their common genetic basis.

TP size impacts the ability of GS models to produce 
reliable GEBVs, making it difficult to compare the per-
formance of models fitted on population subsets of differ-
ent sizes (as above). To investigate this effect, stratified 
bootstrap (Davison & Hinkley 1997) resampling was used 
to sample new populations of size 50, 100 and 200 from 
each country. The changes in performance of GS models 
for cross-country predictions were then studied as a func-
tion of the bootstrap samples’ size (using 100 such sam-
ples for each country). As previously, the models’ param-
eters were estimated on the TP using five runs of tenfold 
cross-validation.

Differentially penalised regression

Differentially penalised regression was tested on the six 
traits with significant marker-trait associations (YLD, FT, 
HT, WK, TGW and GPC) using the 11 candidate adapta-
tion genes screened on the panel (Table 2). Given the inter-
relationships among traits and the structured nature of the 
population, each locus was considered to be a potential 
candidate for each trait. DiPR was employed following the 
regression model

where b1 = [b1 b2…bm] is a vector of m fixed, standardised, 
covariate effects; b2 = [bm1+1 bm1+2…bk] is a vector of (k-
m) separate fixed, standardised, covariate effects; Y = [y1 

Y = X1b1 + X2b2,

y2…yn] is a vector of n phenotypes; X1 and X2 are design 
matrices for the two sets of covariates and assign values at 
each to the individual phenotypes in Y.

This model was fitted by minimising

 where the b1p and b2q index the elements 
of b1 and b2. The first part of the equation 
(

∑n
1

(

yi −
∑m1

1
b1pxij −

∑k
m1+1

b2qxik

)2
)

 is identical 

to that minimised in ordinary least squares and corre-
sponds to minimising the deviation of observed values 
from expected. The second two terms penalise the sum of 
squares of the two sets of regression coefficients, b1 and b2, 
independently, with respective penalties, λ/w and λ/(1−w). 
w and (1−w) are scaling factors for the standard deviation 
of the two groups of covariates, since a regression on x with 
an estimated regression coefficient b gives an identical fit 
to a regression on wx with a regression coefficient b/w. 
Thus, if the two sets of standardised covariates are addi-
tionally scaled by w and (1−w), then λ can be estimated 
using standard ridge regression software across the pooled 
set of covariates. Varying w over a 0–1 range will then find 
optimum values of w and λ. At values of w = 0 and w = 1, 
the model is equivalent to ridge regression on, respectively, 
b2 or b1 alone. At w = 0.5, both sets of covariates are given 
equal weight, equivalent to ridge regression on the pooled 
covariates.

The model was fitted using the R package ‘penalized’ 
(Goeman et al. 2012) by searching for values of w, which 
maximised the cross-validation correlation. Five runs of 
tenfold cross-validations were run for each trait with w var-
ying in intervals of 0.05.

Results

Variation in key trait phenotypes

Both country of origin (P = 0.008; GBR > FRA > DEU) 
and age (P = 0.001; post-2000 > 1990–1999 > pre-1990) 
of variety had significant YLD effects. Regression of 

n
∑

1

(

yi −

m1
∑

1

b1pxij −

k
∑

m1+1

b2qxik

)2

+ �/w

m1
∑

1

b2

1p + �/(1 − w)

k
∑

m1+1

b2

2q

Table 2  Proportion of varieties from each country of origin with 
known adaptation genes for vernalization (Vrn: vrn-A1/vrn-B1/vrn-
D1: winter alleles) and photoperiod (Ppd: Ppd-A1a/Ppd-B1a/Ppd-

D1a: photoperiod insensitive alleles) response, reduced height (Rht: 
Rht-B1b/Rht-D1b/Rht8_193: reduced height alleles) and the 1BL/1RS 
wheat-rye translocation

vrn-A1 vrn-B1 vrn-D1 vrn-B3 Ppd-A1a Ppd-B1a Ppd-D1a Rht-B1b Rht-D1b Rht8_192 1BL/1RS

FRA 0.92 0.97 0.99 0.70 0.00 0.03 0.40 0.11 0.51 0.05 0.12

DEU 0.97 0.99 1.00 0.87 0.00 0.00 0.01 0.07 0.40 0.01 0.26

GBR 0.84 0.97 0.99 0.94 0.00 0.00 0.03 0.04 0.92 0.00 0.36
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yield on variety age showed a significant (P < 0.001) YLD 
increase over time across the dataset (R2 = 0.38), and for 
each of the countries, with the largest increase recorded for 
the French varieties (R2 = 0.57). GPC decreased over the 
dataset with a significant variety origin and age interaction 
(P = 0.024). Pre-1990s varieties from FRA had the highest 
GPC levels (13.88), with the lowest levels recorded for the 
most recent (post-2000) GBR varieties (12.59). Country of 
origin significantly influenced FT (P < 0.001), with FRA 
varieties flowering (GS55) an average of 4 days earlier than 
DEU and GBR varieties. 40 % of French lines had the early 
flowering PI Ppd-D1a allele (Table 2) with no trend with 
age, suggesting selection to suit local requirements. Early 
flowering alleles were virtually absent from the DEU and 
GBR variety sets. Across experiments, where present, Ppd-
D1a conferred reduced height (−4.68 cm) and significantly 
reduced YLD (−0.23 t/ha; P = 0.003). The majority of 
the accessions had wild-type Vrn alleles conferring winter 
growth habit and were semi-dwarf, as conferred by mutant 
Rht alleles (Table 2), most notably Rht-D1b (Rht2) most 
frequent in GBR varieties (92 %), followed by the FRA 
(51 %) and DEU (40 %) material. Both Rht-D1b and Rht-
B1b significantly reduced HT across experiments (−3.39 
and −7.53 cm, respectively; Table 3). The 7–8 cm HT 
reducing Rht8_192 allele (Korzun et al. 1998) occurred at 
extremely low frequency, and where present conferred no 
significant HT reduction, whilst the Rht8_175 allele gave a 
slight reduction (−1.6 cm, P = 0.024). There was a strong 
geographic trend for WK score and a variety age and ori-
gin interaction (P = 0.015). DEU varieties exhibited the 
highest WK resistance, increasing significantly after 1990, 
in contrast to FRA resistance which fell significantly after 
2000 (Fig. 1). GBR scores were stable over time. Trait her-
itabilities for single plots were relatively high for FT (0.63) 
and HT (0.82), but lower for YLD (0.25). Within site herit-
abilities for traits scored at selected locations ranged from 
high (WK (0.92); GPC (0.83)) to low (SW (0.13); TGW 
(0.06)).

Linkage disequilibrium, population structure and statistical 
power

Analysis of STRUCTURE models estimated K = 2 based 
on ΔK (Evanno et al. 2005) (Fig. S1). In the final data-
set, PCoA revealed some underlying structure conferred 
by country of origin (Fig. 2), with PC1 and PC2 describ-
ing 8.6 and 3.9 % of the genetic variation. The GBR and 

Table 3  Mean allelic effects across the complete association map-
ping panel of known genes on YLD, HT and FT

* Significant differences conferred by the allele (P < 0.05)

Ppd-D1a Rht-B1b Rht-D1b Rht8_193

Yield (t/ha) −0.23* 0.00 0.62* −0.64*

Height (cm) −4.68* −3.39* −7.53* 0.60

FT (days) −5.79* −2.00* 1.20* −4.11*

FT_FRA (days) −6.72* −2.40* 0.80* −4.40*

FT_DEU (days) −4.07* 0.00 1.06* −3.50*

FT_UK (days) −7.40* −2.50* 2.20* −5.05*

FT_2010 (days) −5.28* −1.90* 1.40* −3.75*

FT_2011 (days) −7.04* −2.40* 1.40* −5.00*

Fig. 1  Opposing trends in WK and country (FRA, DEU, GBR) and 
year of variety registration for 376 elite Northern European winter 
wheat varieties

Fig. 2  Population structure of the TriticeaeGenome panel of 376 elite 
winter wheat varieties as determined by PCoA (coloured by country 
of origin of each variety), showing PC1 versus PC2 which together 
explain 12.5 % of the genetic variation in the panel
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DEU variety sets could be distinguished, whilst the FRA 
set overlapped both (Fig. 2). Significant LD was estimated 
using the full dataset of mapped markers to extend to 
20 cM (Fig. S2). Simulation results showed good power to 
detect QTL with modest contribution to trait heritability for 
the target locus (Table S2; Fig. S3). As expected, on aver-
age, the presence of residual genetic variance [Table S2(b); 
Fig S3(b)] reduces power, though the differences were 
small for the cases studied here.

Detection of non-perfectly linked markers ranged from 
0 to 0.430 (h2 = 0.75; 0 cM < x ≤ 1 cM from target; 100 
background markers). With h2 of 0.25, 0.50 and 0.75 the 
target locus was always identified (Table S2), showing 
good power to detect QTL of modest heritability utilising 
the experimental marker density of 1,804 markers both 
with and without background effects. The mean inter-
marker interval was 2.18 cM, but with a total map length 
of 2,851 cM, 35 % of inter-maker intervals were >10 cM 
indicating a requirement for higher marker density to gain 
full benefit from the panel.

Association mapping

MLMs for all traits except SW identified significant marker 
associations. For YLD, two significant marker-trait asso-
ciations were detected across experiments: BWS2767 and 
Rht-D1 (chromosome 4D) (Table 4). Accounting for Rht-
D1 (as a covariate) retained the BWS2767 association and 
detected an additional association with BWS9255, although 
this was lost when HT was also considered (as a covariate). 
The DArT markers wPt_664488 on the distal part of chro-
mosome 3AS and wPt_3451 on chromosome 1BL (respec-
tively) were most highly associated with these unmapped 
SNP markers. When year of registration was included as a 
covariate, no significant YLD associations were detected. 
There was strong evidence that both the 3AS and 1BL loci 
were under selection, with a significant (P < 0.001) interac-
tion between these markers and year, and near fixation in 
more recent material.

The association between YLD and BWS2767 
(wPt_664488, 3AS) was detected in all of the countries 
in the study, although only in a single year (Table 4). Rht-
D1 had a significant association with YLD in FRA, as did 
wPt_0472 (tagging Rht-D1). Three additional markers 
were detected in single years in GBR, namely BWS9255 
(wPt_3451, 1BL; 2010), wPt_6966 (4AL; 2010) and 
BWS3158 (wPt_729839, 6AS; 2011). A SNP marker 
(BWS2641) tagging VRN-B3 was also detected in DEU in 
2011 and GBR in 2010.

AM for FT confirmed the role of Ppd-D1 (2D), which 
was significantly associated with FT across experi-
ments (Table 4). The SNP marker BWS2525 and a 2D 
DArT marker (wPt_733227), tagging Ppd-D1 were also 

significantly associated with FT in all but one experiment 
(DEU 2011). A SNP marker tagging VRN-B3 (BWS2641) 
was also associated with FT in DEU in 2010. Accounting 
for Ppd-D1 (as a covariate) detected association between 
VRN-B3 and wPt_1912 (1BS) and FT.

Six marker-trait associations were detected for HT 
(Table 4), including Rht-D1, wPt_0472 (tagging Rht-D1) 
and Ppd-D1. Three other markers, two on 5AL (BWS2245 
and BWS5515, both associated with tPt_6495) and one 
on 6AS (wPt_732355) were also significantly associated 
with HT. When Rht-D1 was run as a covariate, the effect 
of Ppd-D1 remained, as did the effect of wPt_732355 on 
6AS. Rht-B1 was also detected in the absence of Rht-D1. 
The effects of both wPt_732355 (6AS) and tPt_6495 (5AL) 
were retained with Ppd-D1 as a covariate.

WK was associated with Ppd-D1 and BWS1493 
(wPt_4142, 6BS). TGW was significantly associated with 
a single SNP marker BWS1515 (wPt_4426, 2BL). GPC 
was also associated with a single SNP marker BWS3158 
(wPt_729839, 6AS), although this association was not 
detectable when YLD was included as a covariate, and was 
also found to be associated with GBR YLD in 2011.

Genomic selection

The tested GS protocols gave similar predictive corre-
lations for YLD within countries (EN: FRA r = 0.76, 
DEU r = 0.62, GBR r = 0.67; LASSO: FRA r = 0.70, 
DEU r = 0.54, GBR r = 0.55; RR: FRA r = 0.71, DEU 
r = 0.52, GBR r = 0.53). Using EN, YLD was predicted 
with the highest accuracy in the FRA varieties (r = 0.75) 
followed by GBR (r = 0.67) and DEU (r = 0.62). Cross-
country YLD predictions were the highest from and to 
FRA (Table 5). Predictions for YLD made on variety age 
(Table 6) were highest from training on the lines registered 
from 1990 to 2000 to predict the YLD of the post-2000 
lines (r = 0.58), and were also relatively high within year 
groupings (pre-1990 r = 0.53; 1990–2000 r = 0.49; post-
2000 r = 0.46).

FT predictions were high within FRA (r = 0.77), but 
reduced in all other comparisons. To investigate whether 
reduced predictive ability in DEU, GBR and across coun-
tries was conferred by distribution of Ppd-D1 in the TP 
and test set, correlations were tested using TPs composed 
only of Ppd-D1a or Ppd-D1b lines, and mixtures of the two 
(Table 7). Pooling lines based on Ppd-D1 led to increased 
predictive correlations in all cases, allowing differentiation 
of early and late flowering types in the test set, but not to 
the point of delineating early or late lines on degrees of ear-
liness or lateness (Fig. S4).

HT predictions were highest in the FRA material 
(r = 0.72), and in the FRA to DEU (r = 0.61) cross-
country predictions. GBR lines gave the lowest HT 
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predictions (r = 0.36). As with FT/Ppd-D1, the allelic 
distribution of Rht-D1 alleles (Table 2) was tested as the 
cause of this reduced prediction accuracy. Across the 
pooled dataset (Table S3) the highest predictions were 
made between TP and test sets with mixtures of Rht-D1 
alleles (r = 0.78), compared to predictions between a 
TP of only Rht-D1b lines to a test set of Rht-D1a lines 
(r = 0.52) (Table S3).

GPC predictions were high within (DEU/FRA 
r = 0.66, GBR r = 0.58) and across countries (Table 5). 
Fitting GPC jointly with YLD and predicting the latter 
from the former across the dataset gave the highest pre-
dictive correlations (r = 0.77) (Fig. 3). In contrast, SW 
predictions were low between countries (ranging from 
0 to 0.22), with the highest predictions within countries 
(FRA r = 0.47; DEU r = 0.36). TGW within country 

Table 4  Significant marker-trait associations (given as q values) across and within experiments for 376 wheat varieties with the significance of 
associations determined using q = 0.05 false discovery rate (FDR)

a AM for HT, WK, TGW and GPC was done on line means across the experiments for which the traits were recorded
b Term included as a covariate in the AM
c Where significant markers were unmapped, chromosome assignment is estimated (via association mapping) to identify the closest mapped 
marker

Traita Covariateb Marker Chrc Across sites Within sites

FRA_2010 FRA_2011 DEU_2010 DEU_2011 GBR_2010 GBR_2011

YLD BWS2767 3A 0.0005 0.0027 0.0033 0.0006

YLD Rht-D1 BWS2767 3A 0.0001

YLD HT BWS2767 3A 0.0012

YLD Rht-D1 4D 0.0006 0.0027 0.0001

YLD Rht-D1 BWS9255 1B 0.0025 0.0048

YLD Rht-D1 BWS3158 6A 0.0025 0.0063

YLD wPt_0472 4D 0.0015

YLD BWS2641 7B 0.0051 0.0005

YLD wPt_6966 4A 0.0044

FT Ppd-D1 2D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FT BWS2525 2D 0.0000 0.0000 0.0000 0.0001 0.0009 0.0001

FT wPt_733227 2D 0.0000 0.0003 0.0000 0.0005 0.0033 0.0000

FT Ppd-D1 VRN-B3 7B 0.0025

FT Ppd-D1 wPt_1912 1B 0.0032

FT BWS2641 7B 0.0004

HT Rht-D1 4D 0.0000

HT Ppd-D1 Rht-D1 4D 0.0000

HT Ppd-D1 2D 0.0001

HT Rht-D1 Ppd-D1 2D 0.0000

HT BWS2245 5A 0.0002

HT Ppd-D1 BWS2245 5A 0.0001

HT wPt_0472 4D 0.0002

HT wPt_732355 6A 0.0002

HT Rht-D1 wPt_732355 6A 0.0000

HT Ppd-D1 wPt_732355 6A 0.0006

HT BWS5515 5A 0.0020

HT Ppd-D1 BWS5515 5A 0.0016

HT Rht-D1 BWS2952 6A 0.0041

HT Rht-D1 Rht-B1 4B 0.0000

WK Ppd-D1 2D 0.0002

WK BWS1493 6B 0.0021

TGW BWS1515 2B 0.0062

GPC BWS3158 6A 0.0018
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predictions ranged from 0.20 to 0.37, whilst cross-coun-
try predictions ranged from 0 to 0.32. WK could not 
be predicted between DEU and GBR in either direc-
tion, but predictions within the DEU material were high 
(r = 0.75).

Cross-country YLD predictions did not show any marked 
improvement when increasing sample size (bootstrap sam-
ples with 50, 100 and 200 observations) (Fig. S5), with the 
exception of predictions from GBR to DEU (r = 0.10 to 
r = 0.29). Similarly, HT, SW and WK were approximately 
constant (Fig. S5) with the exception of predictions from 
FRA to DEU (HT: r = 0.46 to r = 0.58; SW: r = 0.13 to 
r = 0.21; WK: r = 0.09 to r = 0.43). WK predictions also 
improved from DEU to FRA (r = 0.09–0.21). FT predic-
tions improved noticeably (r = 0.10 to r = 0.25–0.36), 
except between GBR and DEU (r = 0.10–0.15). GPC and 
TGW predictions from FRA to GBR and from GBR to 
FRA also improved (GPC: r = 0.26–0.27 to r = 0.45–0.47; 
TGW: r = 0.09–0.10 to r = 0.21–0.26).

Differentially penalised regression

Figure 4 plots average cross-validation correlations for 
each trait against w, the scaling factor for the standard-
ised covariates where w = 0 corresponds to prediction 
from DArT markers alone, w = 1 corresponds to predic-
tion from the ten candidate loci markers alone, and w = 0.5 
corresponds to prediction from ridge regression equally 
weighted on the pooled markers. The cross-validation 
correlations at these values of w and the maximum cross-
validation correlation are given in Table 8. There is little 
or no difference from prediction on DArT markers alone 
(w = 0) and from unweighted prediction (w = 0.5) on all 
markers. Values of w which maximise the cross-validation 
correlation are all between 0.5 and 1, i.e. where relatively 
more weight is placed on the candidates than on the DArT 
markers. The improvement is large for HT and FT because 
there is substantial information in the candidate markers 
for these traits. Using these markers alone, cross-validation 
correlations are high (FT = 0.76, HT = 0.67). For FT, this 
is higher than from any regression incorporating the DArT 
markers, except DiPR itself.

Discussion

The genetic gain in elite variety YLD over time in key pro-
duction regions of Northern Europe (FRA, DEU and GBR) 
confirms the vital role of plant breeding efforts (Mackay 

Table 5  Predictive correlations (r) for all traits within and between countries [FRA (210 lines); DEU (90); GBR (75)] with standard deviations 
based on 100,000 bootstraps indicated in parentheses

Trait FRA DEU GBR FRA DEU GBR

FRA DEU GBR DEU GBR FRA GBR FRA DEU

YLD 0.75 (0.03) 0.62 (0.06) 0.67 (0.06) 0.55 (0.07) 0.54 (0.08) 0.52 (0.04) 0.32 (0.10) 0.50 (0.05) 0.22 (0.10)

FT 0.77 (0.03) 0.43 (0.08) 0.36 (0.09) 0.23 (0.14) 0.36 (0.17) 0.11 (0.07) 0.08 (0.13) 0.21 (0.07) 0.11 (0.10)

HT 0.72 (0.04) 0.55 (0.09) 0.36 (0.07) 0.61 (0.07) 0.57 (0.07) 0.45 (0.05) 0.55 (0.08) 0.54 (0.04) 0.55 (0.07)

GPC 0.66 (0.04) 0.66 (0.05) 0.58 (0.08) 0.48 (0.08) 0.54 (0.08) 0.43 (0.05) 0.31 (0.08) 0.48 (0.05) 0.49 (0.07)

SW 0.49 (0.05) 0.24 (0.09) 0.07 (0.10) 0.22 (0.11) 0.12 (0.13) 0.19 (0.07) 0.00 (0.11) 0.22 (0.06) 0.04 (0.09)

TGW 0.36 (0.05) 0.12 (0.11) 0.31 (0.10) 0.15 (0.11) 0.32 (0.10) 0.17 (0.06) 0.21 (0.10) 0.20 (0.06) 0.00 (0.10)

WK 0.48 (0.06) 0.75 (0.04) 0.25 (0.11) 0.44 (0.07) 0.23 (0.09) 0.14 (0.07) 0.00 (0.12) 0.19 (0.06) 0.00 (0.10)

Table 6  Predictive correlations by year of variety registration with 
standard deviations based on 100,000 bootstraps indicated in paren-
theses

From/to <1990 1990–2000 >2000

<1990 0.53 (0.06) 0.40 (0.09) 0.42 (0.07)

1990–2000 0.49 (0.07) 0.58 (0.06)

>2000 0.46 (0.06)

Table 7  Predictive correlations (r) for FT with different groups of Ppd-D1 alleles in the training population and test set with standard deviations 
based on 100,000 bootstraps indicated in parentheses

From/to Ppd-D1a (83) Ppd-D1b (288) Ppd-D1a (40) + Ppd-D1b (143) Ppd-D1a (42) + Ppd-D1b (144)

Ppd-D1a (83) 0.38 (0.08) 0.22 (0.10)

Ppd-D1b (288) 0.26 (0.10) 0.57 (0.04)

Ppd-D1a (40) + Ppd-D1b (143) 0.80 (0.03) 0.79 (0.03)

Ppd-D1a (42) + Ppd-D1b (144) 0.79 (0.03) 0.80 (0.03)
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et al. 2011). AM for YLD incorporating year of variety reg-
istration resulted in no significant marker-trait association, 
supporting YLD gains through time as the result of breed-
ing, and the introduction of, and selection for, advantageous 
combinations of alleles. These YLD gains have come at the 
expense of GPC, a well-documented trade-off (Kibite and 
Evans 1984; Simmonds 1995). GPC is a breeding target 
both for health (grain quality) and its proposed economic 

benefit (reducing nitrogenous fertiliser application) 
(reviewed by Balyan et al. 2013). Early work suggested 
no genetic basis for the inverse relationship between YLD 
and GPC, proposing strong, environmental and physiologi-
cal interactions (Kibite and Evans 1984; Simmonds 1995). 
Despite the identification (Joppa et al. 1997; Olmos et al. 
2003) and refinement (Distelfeld et al. 2004, 2006) of the 
Gpc-B1 locus on chromosome 6B governing GPC its utility 
for increasing GPC stably across environments independ-
ent of genetic background effects without agronomic losses 
remains unproven (Carter et al. 2012; Balyan et al. 2013). 
In the current study, a single significant marker association 
was detected on chromosome 6AS. Two of seven previous 
QTL studies in bi-parental populations have identified QTL 
for GPC in a similar location on chromosome 6AS (Sour-
dille et al. 2003; Huang et al. 2006). The loss of this asso-
ciation when YLD was included as a covariate, confirms 
an intricate relationship in the genetic control of YLD and 
GPC effects. Employing GS to fit GPC jointly with YLD 
and use the former to predict the latter gave higher cross-
validated correlations than for predicting YLD in isolation, 
further supporting the strength of this relationship.

There are relatively few QTL studies reporting wheat 
YLD QTL across environments, a reflection of its complex 
nature and environmental dependency (Quarrie et al. 2005). 
In the current study, several significant markers were iden-
tified. A SNP on chromosome 3AS that was independent of 
HT effects was detected across experiments, and in single 
trials (FRA 2010; DEU 2011; GBR 2011). Bennett et al. 
(2012a, b) identified overlapping YLD QTLs in very simi-
lar locations on 3AS across southern Australian (2012a) 
and Mexican (2012b) environments. Snape et al. (2007) 
also identified a grain filling QTL on 3A that co-located 
with QTL for YLD in some of the environments tested. 
The genetic basis of this YLD association merits further 
investigation.

Rht-D1b previously shown to increase assimilate par-
titioning to the ear and ears/plant (Hedden 2003; Borrell 
et al. 1990) was significantly associated with YLD and 
had a significant allelic effect across the panel (+0.62t/
ha). A SNP marker on 1BL was associated with YLD in 
the absence of the Rht-D1 effect across experiments, and 
in GBR 2010, indicating it confers YLD effect independent 
of this source of reduced HT. Two additional associations 
were only identified in single years in GBR (4AL 2010; 
6AS 2011) with the large GxE component of variation sug-
gesting they may be effective only in specific environments. 
The vernalization gene VRN-B3 (7B) was associated with 
increased YLD in DEU 2011 and GBR 2010, supporting 
the role of lifecycle duration on YLD, particularly where 
winter temperatures affect development via vernalization.

AM for FT identified five significant marker-trait asso-
ciations, three of which could be ascribed to Ppd-D1, 

Fig. 3  Fitting GPC jointly with YLD and predicting the latter from 
the former showed a strong predictive correlation (r = 0.77)

Fig. 4  Average DiPR correlations (based on five times tenfold cross-
validation) for six traits against the standardised scaling factor for 
covariates (w)
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confirming its well-documented effect on FT under both 
field (Worland 1996; Bentley et al. 2013) and glasshouse 
(Bentley et al. 2011) conditions. Only when Ppd-D1 was 
accounted for (as a covariate) were other markers associ-
ated with FT, namely VRN-B3 and a 1BS DArT identified, 
despite previous authors documenting fine-tuning of FT via 
numerous earliness per se QTL (e.g. Griffiths et al. 2009) 
independent of Ppd. VRN-B3, a promoter retroelement 
insertion conferring early flowering, is known to influence 
FT in winter wheat (Yan et al. 2006). Griffiths et al. (2009) 
identified two independent FT QTL on 1B in a meta-QTL 
study, suggesting one was a possible homoeoallele of the 
stronger, more environmentally stable 1D FT QTL they 
also identified. The 1BS marker identified in association 
with FT in this study represents a potentially useful addi-
tional controller of FT that warrants further investigation 
and validation.

Application of GS to predict FT was largely unsuc-
cessful with the exception of the FRA to FRA predictions. 
Given the dominance of Ppd-D1 in the genetic control of 
FT, and its presence in the FRA variety set (40 % Ppd-D1a) 
GS was repeated to test whether Ppd-D1 was also a pri-
mary determinant of prediction efficiency. This was done 
in two ways: the first used a simple method to account for 
the strong, single gene effect, namely using it to stratify the 
TP and test set. The second employed DiPR. Using the first 
approach, poor predictions from using only Ppd-D1a or 
Ppd-D1b variety TPs could be markedly improved when a 
mixture of Ppd-D1 alleles were used in the TP and test set, 
and the GS model could distinguish, and predict, early and 
late types. Similarly, mixing Rht-D1b and Rht-D1a alleles 
in the TP and test sets improved HT prediction accuracy. 
This approach is similar to that proposed by Hayes et al. 
(2009) for improving GEBV accuracies in cattle test sets 
comprised of multiple breeds by ensuring representation of 
all breeds in the TP. Although degrees of earliness/lateness 
or short/tall could not be distinguished, these results have 
practical implications in the design of TP and test sets to 
predict these traits in elite material differing at key adapta-
tion loci, and for other traits that are strongly influenced by 
single genes.

DiPR gave the largest increase in accuracy for FT, with a 
cross-validation correlation of 0.82, compared to 0.72 when 
the candidate and DArT markers were pooled. FT was pre-
dicted with greater accuracy from the candidates alone than 
from the DArT markers (0.76 compared to 0.72). Given the 
inclusion of Ppd-D1 within the candidate marker set, which 
has a well established large effect on flowering time (e.g. 
Bentley et al. 2013), this is not surprising. In this dataset 
Ppd-D1 was associated with population structure: its allele 
frequencies differed between countries and therefore, a 
proportion of the increased prediction accuracy from DiPR 
may come from more effective tagging of earlier and later 
flowering groups of lines.

HT was significantly associated with Rht-D1b, Rht-B1b 
and Ppd-D1a, all of which have been previously shown to 
reduce height (Wilhelm et al. 2013), and six other mark-
ers. The 5AL association was lost when Rht-D1 was 
accounted for, supporting previous reports of major QTLs 
affecting adaptability on 5A (Kato et al. 2000; Huang et al. 
2006; Marza et al. 2006). In contrast, the 6AS association 
remained significant when both Rht-D1 and Ppd-D1 were 
included as covariates, indicating it as an additional regu-
lator of HT warranting further investigation. Marza et al. 
(2006) reported a QTL on 6A that consistently increased 
HT across environments. In general, applying GS to pre-
dict HT gave relatively good predictions. The lowest pre-
dictive power was observed in the GBR set, most likely 
due to the dominance of Rht-D1b, reducing the efficiency 
of predictions, as for Ppd-D1. DiPR also substantially 
improved the accuracy of prediction for HT where again, 
the candidate markers (particularly Rht-D1) are known 
to have major effects on the trait, and also tag population 
subdivision. This effect will occur for any QTL for which 
allele frequencies differ among populations. The hardiness 
trait WK was significantly associated with Ppd-D1 and a 
SNP marker on 6BS, with early flowering Ppd-D1a lines 
being less hardy. Tolerance to low temperatures is a trait 
of economic importance, especially in northerly latitudes 
(such as DEU) making it an interesting regionally specific 
adaptive trait. It is acquired through the biochemical, struc-
tural and physiological processes that contribute to cold 

Table 8  Cross-validated correlations for each of six traits where w (the scaling factor for the standardised covariates) is predicted from DArTs 
alone (w = 0), pooled, equally weighted markers (w = 0.5) and the 11 candidate gene markers alone (w = 1)

The DiPR and maximum w cross-validation correlations are also given

Trait YLD FT HT WK TGW GPC

DArT (w = 0) 0.71 0.70 0.73 0.71 0.37 0.66

Pooled (w = 0.5) 0.71 0.72 0.74 0.72 0.37 0.66

Candidates (w = 1) 0.56 0.76 0.67 0.40 0.21 0.48

DiPR 0.73 0.82 0.79 0.75 0.38 0.67

w at maximum 0.80 0.85 0.90 0.85 0.75 0.70
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acclimation (Båga et al. 2007). The effect of FT (conferred 
by Ppd-D1) on WK is possibly a reflection of its effect on 
lifecycle duration, although Ppd-D1 has not been shown 
to effect seedling vigour, or early stages in wheat develop-
ment (Bentley et al. 2013). Its effect to reduce hardiness in 
the current study probably reflects stabilising selection for 
this trait in the warmer FRA and GBR climates. Most of 
the genetic control of low temperature tolerance is reported 
to come from the group 5 chromosomes, primarily through 
the effects of vernalization (Vrn-1) loci, frost resistance 
(Fr) loci, and additional QTL proximal to vrn-1 genes 
(Båga et al. 2007; Zhao et al. 2013). There have been no 
previous reports of genetic control of WK or other winter 
hardiness traits on 6BS, making this a key target for fur-
ther investigation for increased WK tolerance. In addition, 
DEU to DEU predictions for WK were high, suggesting GS 
could also be successfully be used for breeding for this trait 
in DEU.

AM for TGW, a component of YLD, detected a single 
significant SNP marker on 2B. Groos et al. (2003) reported 
a TGW QTL on 2BL at six locations during a single year in 
FRA, indicating there is potential that this QTL is relevant 
to TGW in Northern Europe. GS for TGW resulted in low 
predictive correlations which was either a result of the low 
heritability, or the extremely small effect additive control 
of this trait. AM for SW detected no significant marker-
trait associations, probably due to its low heritability. Early 
investigations on this trait found poor correlations between 
YLD and SW, attributing this to genotype and environ-
mental variability and its interaction with grain characters 
(Hook 1984). The GS gave reasonable predictions within 
FRA, and to a lesser extent DEU, suggesting that in the 
absence of suitable genetic markers to apply in MAS, GS 
could be applied to improve SW. This would have the 
added advantage of allowing selections to be made without 
the need to phenotye adult plants. This is also the case for 
GPC, which had high predictive correlations.

The improvement from DiPR for YLD, GPC, TGW and 
WK was slight. The lack of substantial improvement is in 
spite of some of the candidate markers having a statistically 
significant effect on the trait: namely Rht-D1 for YLD and 
Ppd-D1 for WK. The increase in prediction accuracy from 
including the candidate markers (w = 0.5) compared to the 
DArT markers alone (w = 0) was very slight, confirming that 
treating markers for known QTL in the same manner as any 
other marker does not reveal their full benefit. It is impor-
tant to note that we have not used the AM results directly to 
select markers for inclusion in trait prediction. Unless sig-
nificant markers were detected through a process of cross-
validation, such use would amount to “double dipping” and 
could give spurious importance to the significant markers in 
the trait prediction. DArT markers, used in the current study 
to obtain genome-wide marker coverage have now been 

superseded by high-density SNP arrays. The low frequency 
of markers, particularly on the D-genome (specifically 4D, 
5D) reduce the efficiency of both AM and GS, and due to a 
rapid decay of LD mean significant marker-trait associations 
were unlikely to be detected on these chromosomes using 
our dataset. A higher marker density would allow the full 
benefits of the association mapping panel to be expressed 
and should increase the precision of the AM. Given that pop-
ulation sizes were relatively low, it would also be interesting 
to investigate effect on GS. However, even with advanced 
technology, low D-genome diversity still remains a barrier to 
marker development (Allen et al. 2012).

In accordance with the original objectives of the study, 
significant marker associations were detected for key traits 
across years and environments in our study and they repre-
sent targets for use in MAS. QTL mapping and AM facilitate 
locating genetic regions underlying complex traits, although 
the ability of subsequent MAS to combine them in realis-
tically sized breeding programmes is somewhat limited. 
Therefore, additional, complementary tools are required 
to optimise selection. To this end, GS has vast potential, 
as supported by the results of this study in which GS gave 
good predictions for the majority of traits investigated. The 
TPs used (based on country or year of registration) were 
employed as convenient vehicles for grouping varieties. As 
population size is central to prediction accuracy, bootstrap 
resampling was also employed, finding that in most cases, a 
marked increase in the predictive correlation with increased 
sample size was achieved. These results suggest that the pop-
ulation sizes used for the GS were too small, providing insuf-
ficient genetic information. In this dataset low correlations 
were not necessarily indicative of low heritability or distant 
relatedness between the varieties in different countries, but 
rather, of a lack of statistical power in the GS model. Con-
versely, constant correlations over different sample sizes 
suggest that the performance of GS, whether good or bad, is 
primarily determined by other factors.

The desire to include additional sources of information 
in trait prediction is increasing. Zhao et al. (2014) described 
weighted best linear unbiased prediction (W-BLUP) which 
extends RR-BLUP by shrinking functional markers inde-
pendently of a genome-wide set of markers, with shrink-
age based on the ratios of residual variance to marker effect 
variances for each class. They report improved accuracy in 
predicting the FT of wheat hybrids from a TP of inbred par-
ents by fitting separate random additive and dominance var-
iance components to both sets based on a functional marker 
set that comprised Ppd-D1, Rht-B1 and Rht-D1. Speed and 
Balding (2014) have described MultiBLUP, a computation-
ally efficient procedure in which multiple random effects 
can be included, each corresponding to a separate subset of 
SNPs. When tested extensively on multiple traits in human 
and mouse datasets they demonstrate substantial increases 
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in accuracy compared to BLUP. They also developed a pro-
cedure: adaptive MultiBLUP in which SNP classes with 
different effect sizes are detected within the dataset, though 
as this process involves significance testing its use in TPs 
for subsequent genomic selection requires further testing.

Although, as here, the same dataset can be used for both 
AM and GS, it should be emphasised that their objectives 
differ. AM aims for unambiguous detection of QTL of major 
effect and for this purpose uses methods to eliminate marker-
trait associations arising from population structure and pedi-
gree relationships together with stringent significance thresh-
olds. In contrast, GS incorporates population structure and 
kinship effects with no significance testing. For this reason 
great attention is being paid to training population design 
(e.g. Hickey et al. 2014) to maintain relevance to the popula-
tion of candidate individuals for GS. In contrast, functional 
polymorphisms and markers in high LD with major QTL are 
likely to have a more consistent effect across populations; in 
the age of genomic selection their detection is still worth-
while. The panel used consists of elite, registered varieties. 
Across the key wheat regions of Northern Europe, kinship 
relationships are high, as seen in the population structure and 
as a result, predictive abilities were generally high. Where 
there was less genetic overlap (i.e. between DEU and GBR), 
predictions fell away. The ability to predict key traits for-
ward in time in elite varieties derived from a common pool 
of ancestors and accounting for commonly used adaptive 
variation is of utility to the implementation of GS within and 
across commercial breeding programmes.
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